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continuous slowing down model. The spectrum of the 
positrons escaping the surface of a plane source thicker 
than the positron range is not identical with the slowing-
down spectrum in an infinite medium due to a defi
ciency in the number of positrons with low energies. 
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IT has been customary to assume, rather arbitrarily, 
in calculations on avalanche breakdown in ger

manium and silicon that, just below the threshold for 
ionization, the predominant energy loss process for 
electrons and holes is optical phonon emission.1-3 I t has 
been realized for some time that for both electrons and 
holes in germanium, contrary to earlier expectations, the 
rate of loss to optical phonons exceeds that to acoustic 
phonons over a wide range of fields starting from low 
ones.4,5 However, in the limit of high enough fields, or 
high enough carrier energies, the loss to acoustic modes 
must once again predominate.5,6 I t is the purpose of the 
present note to demonstrate that in Ge, for electrons 
with energies of the order of the band gap and larger, the 
rate of loss to acoustic modes is larger than that to 
optical modes. 

Using the usual perturbation theory, we may write 
for the rate of energy loss to acoustic modes of an 
electron with wave vector k, measured relative to the 

1 P. A. Wolff, Phys. Rev. 95, 1415 (1954). 
8 W. Shockley, in Proceedings of the International Conference on 
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of Sciences, Prague, 1961), p. 81. 
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notes that for very high-energy electrons the loss to acoustic modes 
again "makes an appreciable contribution." 
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band edge, 
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where hcoqa and Nqa are the energy and steady-state 
number of phonons with wave vector q and polarization 
a. The argument of the 5 function is the difference be
tween the initial and final energies of the system. The 
first term of (1) gives the rate of energy gain due to 
phonon absorption, while the second term gives the rate 
of loss due to emission. The matrix elements for acoustic 
phonon interaction in the many-valley band structure 
are given by7 

Za
2hq f 5Nqa\ 

|(k±q|Fa'|k)|*= [Nqa+i+ ) , (2) 
2Vpua\ 2 J 

where for longitudinal waves a=l, Si=Sd+Sucos26, 
and for transverse waves a=tJSt=

:Su sin0 cos0, 0 being 
the angle between q and the z (longitudinal) axis of the 
constant-energy ellipsoids. The quantity ua is an aver
age velocity for acoustic waves of polarization a, and V 
and p are the volume and density of the material, 
respectively. 

7 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 
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Expressions are derived for the rates of loss of high-energy electrons in a many-valley band structure to 
acoustic and optical modes. Evaluating these for germanium, for which all the parameters are now reasonably 
well known, we find that, contrary to what is usually assumed, the rate of loss to acoustic modes is greater 
than that to optical modes for electron energies of the order of the energy gap. 
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The matrix element (2) is obtained by using as the 
perturbing potential the so-called deformation poten
tial, i.e., the shift of the band edge under the strain due 
to the acoustic wave. For this to be a good approxima
tion, it was shown in the derivation by Bardeen and 
Shockley,8 one must be able to neglect a number of 
terms of the order of the carrier energy times the strain. 
This neglect is clearly not as well justified for hot 
electrons as it is for thermal electrons. We shall show, 
however, that it should still lead to acceptable results 
for electrons with, say, f V energy in Ge. 

One point in the derivation at which such terms are 
neglected is in the assumption that the strain-produced 
shift in energy 88 of an electron with wave vector k 
(relative to the band edge) is the same as the shift of the 
band edge. To get an estimate of the error involved in 
this assumption, we shall limit ourselves to terms in k2, 
neglecting terms in higher orders of k, and also deal 
with an isotropic effective mass. The assumption of the 
same shift for higher levels as for the band edge is then 
equivalent to the assumption that the effective mass 
does not change with strain. It is reasonable, however, to 
expect a change 8m in effective mass that is linear in the 
strain, since only small strains are under consideration. 
The shift in energy under strain of a state with wave 
vector k+k ( i ) , k(i) being the wave vector of the band 
edge, may then be written, to terms linear in strain, 

88(k+k^) = 88(k^)- 88m/m. 

The quantity 88m/m has been estimated by Herring9 

for the simple many-valley model to be of the order of 
(k/k^)288{¥»). For electrons of 0.75 eV in Ge, the 
quantity (k/k^)2 ranges from 0.02 to 0.3 as the mass 
goes from the observed value of mt, 0.08m0, to that of 
mh 1.6wo. Thus it should still be tolerable for 0.75-eV 
electrons to neglect the additional shift due to change in 
mass. It may be noted that the quantity S8m/m could 
be of the order of 5<§(k(i)) even for thermal electrons in 
the case of degenerate bands, or of a material in which 
the effective mass depends strongly on the energy gap.10 

At other points in the demonstration8 of the validity 
of replacing the perturbing potential by the deformation 
potential there appear terms involving the gradient of 
the strain. This is proportional to q, which is ~k , and, 
therefore, also larger for hot electrons. Bardeen and 
Shockley have shown that these terms are of the order 
of 8Xstrain.8 Such terms appear in sums that include 
terms of the order of the deformation potential times 
strain. Since the deformation potentials in ^-Ge are 
about 10 V or more, one may still neglect the terms in 8 
for f-V electrons without serious error. We conclude 
that the matrix element (2) may still be used with 
reasonable accuracy for electrons of such energy. In the 
treatment that follows we also neglect dispersion, and 

8 J. Bareden and W. Shockley, Phys. Rev. 80, 72 (1950). 
9 C. Herring, Bell System Tech. J. 34, 237 (1955). 
10 R. W. Keyes, in Solid State Physics, edited by F. Seitz and D. 

Turnbull (Academic Press Inc., New York, I960), Vol. 11, p. 149. 

the effect on the energy of terms quadratic, in k. This 
undoubtedly diminishes somewhat the accuracy of 
dS/dt for the higher energies, but again the effects are 
still not large enough to affect the results seriously. 

To evaluate (1) we convert X!g to an integration in 
the transformed crystal momentum space in which the 
constant-energy ellipsoids are spheres. This requires the 
substitution: 

?i=?i*(wi/w0)1/2, for i=x,y,z, (3) 

and a similar substitution for the components of k. With 
(2) and (3) we may write 

d8 mtniill2h 
_ ( k ) = 
dt Sir2pmo*12 

XL Za
2q2[_Nqa8(8k+q— 8k-huaq) 

• (Nqa+l)8(8k-q- 8k+huaq)1dq*. (4) 

As in the case of the simple model,5 emission and absorp
tion due to Nqa approximately cancel each other, 
leaving a small net absorption rate that is significant 
only for electrons at or near thermal energy. Since our 
present interest is in high-energy electrons, we shall 
drop the terms in (4) in Nqa. When q is expressed in 
terms of q*, (4) becomes 

dS mtmf% f r 
"(k) = - — S \d<P*\ dd* sin0*Ea

2C(0*) 
5/2 

= / X / dq*q**6(S^- 8k+huaq) , (5) 

where C(0*) = cos20*+(w*/wj) sin20*. Because of the 
dependence of C(0*) and E<*2 on 0*, it is necessary to 
change the usual order of integration11 and integrate (5) 
over q* first. Neglecting terms of the order of mtfujhk*, 
as is usual, we find 

/ 
dq*q*±8(8^(l-8k+huaq) 

24m0 

= — &*3rCOS0* COS0&* 
h2 

+ sin0* sin0** cos(>*- <p.k*)J, (6) 

where dk* and (pk* denote the polar and azimuthal 
angles of k*. As a result of (6), (dS/dt) (k) varies with the 
direction of k or k*. To obtain the average of d8/dt over 
k*, one may carry out the integration for k*||z, and for 
k*_Ls, and average the results with appropriate weight
ing. In order that q* be positive where the argument of 
the 8 function vanishes, it is necessary to restrict the 
ranges of integration over 0* and <p*. Finally, we find for 

11 See, for example, E. M. Conwell, Phys. Rev. 135, A814 (1964). 
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optical modes at a 
lattice temperature 
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the average rate of energy loss due to intravalley 
acoustic scattering of electrons with energies several 
times thermal or greater: 

(dS/dt)M= - ( 2 3 / W m ^ S o V x ^ p ) &n, (7) 

where S o 2 = S / [ f + J ( w ^ , ) ( ( S . / S . ) + l ) 2 ] . If the 
usual substitutions are made to take the many-valley 
model into the simple model—i.e., mi=mt=m, 2 ^ = 0 
and Zd=Eh the deformation potential for the simple 
model—it is seen that (7) goes over to the expression 
obtained earlier for that case.12 I t is also seen that if the 
electrons in the valley under consideration are assumed 
to have a Maxwell-Boltzmann energy distribution at a 
temperature Te, the average over the distribution of 
dS/dt given by (7) agrees with the result given earlier13 

for the average rate of energy loss. 
The rate of energy loss to optical modes may also be 

calculated from the expression (1). Since the matrix 
element and the phonon energy for that case are inde
pendent of By the calculation is very much the same as 
for the simple model of the band structure,5 the only 
difference being the replacement of the simple model 
effective mass by the geometric mean mass. For S>ftcoQ, 
the optical phonon energy, the result may be stated 

/dS\ 1 mtm^2D2 eXQ 

\dtJop V2 wh2p ex*-\ 

X[(£-£co0)1 / 2- -*o(5+«o)0)1/2], (8) 

where Xo=fto)o/koT and D is the optical deformation 
potential defined as the shift of the band edge per unit 
displacement of the two sublattices relative to each 
other. I t may be noted that this expression will also be 
somewhat less accurate at the higher electron energies 
because additional terms in the matrix element, of order 
k,u will begin to be significant, as well as dispersion and 
quadratic terms in <§(k). 

Values of D for electrons in germanium have been 
obtained from the interpretation of infrared absorption 
data,15 and from the saturation drift velocity of hot 
electrons.16 The two values are quite similar. Since in 
both cases the D value obtained depends on the values 
of Ed and 2W assumed, it is advisable to choose the com
plete set from one source or the other. We have chosen 
the set of de Veer and Meyer15: £>=4X108 eV/cm, 
Ed= - 9 . 0 7 eV, and Su= 19.3 eV. In the other set D is 
larger, but the Sd and Su values lead to a somewhat 
larger value of So, so the ratio of optical to acoustic 
mode scattering is increased only a little. For the other 
quantities that appear in (7) and (8) we have used the 
usual values: #coo/& = 400°, m*=0.082m0, mi/mt=20. 
The resulting rates of energy loss at room temperature 
are plotted in Fig. 1. I t is seen that the rate of loss to 
acoustic modes begins to exceed that to optical modes at 
electron energies less than the gap energy. This should 
also be true at 78° since the loss rates are practically 
independent of temperature. 

The value of D given above contains also the effect of 
the small amount of equivalent intervalley scattering 
that one expects in Ge.15 I t does not, however, contain 
any contribution of nonequivalent intervalley scat
tering. I t has been suggested17 that scattering from the 
[111] valleys to the [100] valleys that lie 0.2 eV higher 
may be important for hot electrons in Ge. De Veer and 
Meyer find that the deformation potential constant for 
this process is comparable in magnitude to D, and that 
the average mass in the [100] valleys is about 35% of 
that for the [100] minima in silicon. This suggests that 
the energy loss due to this process may also have to be 
taken into account for high-energy electrons. 

For holes in germanium, because of the stronger 
coupling to the optical modes, losses to optical modes 
will outweigh those to acoustic modes to higher energies 
than has been found to be the case for electrons. 
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